
1 INTRODUCTION 

Accurate knowledge of spatial and temporal varia-
tion in soil moisture at high resolution is critical for 
achieving sustainable land and water management, 
and for improved climate change prediction and 
flood forecasting (Entekhabi et al. 1996, Alemaw et 
al. 2006).  Such data are essential for efficient irriga-
tion scheduling and cropping practices, and the accu-
rate initialisation of climate prediction models, so 
that reliable climate forecasts can be obtained for 
land management.  With agriculture being by far the 
largest water user in Australia, even moderate water 
savings of 10% in that sector would lead to a water 
saving equivalent to one third of the total consump-
tive use by our capital cities (ABS 2006).  Moreover, 
soil moisture information is needed for setting the 
correct antecedent moisture conditions in flood fore-
casting models.  The fundamental limitation is that 
spatial and temporal variation in soil moisture is not 
well known or easy to measure, particularly at high 
resolution over large areas.  Techniques for estimat-

ing soil moisture include ground, airborne and satel-
lite measurement technologies, and combinations 
with modeling systems.   

Over the past three decades there have been nu-
merous soil moisture remote sensing studies, using 
thermal infrared (surface temperature) and micro-
wave (passive and active) electromagnetic radiation.  
Of these, microwave is the most promising approach 
due to its all weather capability and direct relation-
ship with soil moisture through the soil dielectric 
constant.  Whilst active (radar) microwave sensing at 
L-band (1.4GHz) has shown some positive results 
(Baghdadi & Zribi 2006), passive (radiometer) mi-
crowave measurements have a reduced sensitivity to 
land surface roughness and vegetation cover (Njoku 
et al. 2002), meaning that passive microwave tech-
niques have the most promise.  However, space-
borne passive microwave data suffers from being a 
low spatial resolution measurement and approaches 
for downscaling (improving the effective resolution) 
are required.  Consequently, when considering air-
borne and satellite technologies, this paper places an 
emphasis on passive microwave approaches and the 
current downscaling options under consideration.  
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ABSTRACT: Soil moisture information is of critical importance to real-world applications such as agricul-
ture, water resource management, flood, fire and landslide prediction, mobility, soil hydraulic parameter esti-
mation etc.  Many of these applications require soil moisture information at high resolution.  While this may 
be estimated from land surface models, the predictions are often poor due to inadequate model physics, poor 
parameter estimates and erroneous atmospheric forcing data.  An alternative is remote sensing but most tech-
niques only give a soil moisture estimate for the top few centimetres.  Moreover, the sensors that give the 
most reliable soil moisture estimates (passive microwave) have relatively low spatial resolution from space, 
being on the order of 50km.  Such sensors include the European Space Agency (ESA) Soil Moisture and 
Ocean Salinity (SMOS) mission launched in Nov 2009, and the National Aeronautics and Space Administra-
tion (NASA) Soil Moisture Active Passive (SMAP) mission scheduled for launch in Oct 2014.  Other high 
spatial resolution satellite observations such as active microwave, visible and thermal have been shown to 
contain information on soil moisture, but their data is noisy and/or difficult to interpret.  However, it is ex-
pected that the low resolution passive microwave data may be downscaled using the noisy high resolution data 
and/or modeling.  For example, SMAP will provide a better than 10km resolution soil moisture product by 
merging 3km active microwave data with 40km passive microwave data.  This paper presents some examples 
of high resolution soil moisture mapping from ground and airborne techniques, combined active-passive satel-
lite soil moisture retrieval, optical downscaling, and assimilation into a high resolution land surface model.  



Moreover, this paper discusses the role of land sur-
face models to both downscale the satellite observa-
tions and to yield a root-zone (top 1m) soil moisture 
map, rather than the near-surface (top 5cm) values 
typically observed.  Calibrating land surface models 
to remotely sensed soil moisture also affords the 
possibility to retrieve soil hydraulic parameters. 

2 GROUND BASED MEASUREMENT 

2.1 Hydraprobe Data Acquisition System 

The Hydraprobe Data Acquisition System (HDAS) 
is a spatially enabled soil moisture, temperature and 
salinity measurement platform that logs all relevant 
information into GIS (Geographic Information Sys-
tem) format using ArcPad

®
.  It has been developed 

over the last 5 years by authors of this paper and 
consists of a Stevens

®
 Water hydraprobe and a GPS 

(Global Positioning System) enabled handheld com-
puter running GIS software and a custom script (see 
Fig. 1). This pocket PC is used to: 

 

 display a map of the sampling area and grid; 
 communicate with the GPS receiver to get the 

real time position; 
 display the location on a background map; 
 communicate with the hydraprobe to take read-

ings of soil moisture, temperature and salinity;  
 obtain metadata including sample date, time, ID; 
 input any additional observations as required; 
 store the metadata, position information and hy-

draprobe readings in a GIS shape file; and 
 display the location of the recorded measure-

ments on the map. 
 

The hydraprobe determines soil moisture and salinity 
by making a high frequency (50 MHz) complex die-
lectric constant measurement.  The hydraprobe sen-
sor provides four voltage outputs that can be con-
verted to soil moisture, temperature and salinity 
using proprietary relationships of Stevens

®
 Water, 

according to three pre-defined soil types.  Addition-
ally the real and imaginary parts of the soils dielec-
tric constant are derived.  Like most soil dielectric 

sensors, the output is soil temperature dependent, 
and is thus integrated with a thermocouple.   

The accuracy of the hydraprobe soil moisture 
output has been found to be poorer than the stated 
manufacturer accuracy by several independent field 
tests; this was observed particularly in clay soils 
characterised by warm temperatures.  Moreover, in 
clays, the standard output showed highly reduced 
sensitivity to changes in soil moisture when wetter 
than 0.3m

3
/m

3
.  Therefore the HDAS system uses an 

advanced soil moisture relationship developed 
though extensive laboratory analysis, with a demon-
strated field accuracy of 0.035m

3
/m

3
 over a variety 

of soil types (Merlin et al. 2007).  It is also more re-
liable with respect to soil temperature variations, 
particularly in clay soils.   

The HDAS allows rapid monitoring of top 5cm 
soil moisture for large areas as shown in Figure 2. 

2.2 COSMOS Rover 

The COsmic-ray Soil Moisture Observing System 
(COSMOS) is a stationary sensing device that gives 
soil moisture information averaged over a footprint 
size of approximately 600m and a depth of around 
from about 70cm in very dry soils to about 15cm in 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. The Hydraprobe Data Aquistion System (left) and 
COSMOS Rover (right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. High resolution soil moisture map using the Hydrap-
robe Data Acquisition System (HDAS) at 250m spacing and the 
COSMOS Rover at a grassland site on 5

th
 September 2011 

(top).  Comparison of HDAS and COSMOS Rover estimates of 
soil moisture (bottom). 



saturated soils, by measuring the fast neutron inten-
sity in the air (Desilets et al. 2010, Zreda et al. 
2011).  A new mobile version of this system is called 
the COSMOS Rover (Fig. 1).  In this implementa-
tion multiple cosmic ray sensing tubes are put into 
the back of a vehicle and driven around the sampling 
area, with time-integrated readings logged each mi-
nute together with a GPS location, altitude, pressure 
and time.  Thus, this system yields soil moisture in-
formation averaged over a footprint approximately 
600m wide and whose length depends on the speed 
of the vehicle (Zreda et al. 2011).  

This system was installed in a 4WD vehicle and 
used to make soil moisture surveys over a 3km × 
3km grassland area in the Murrumbidgee River 
catchment, NSW, Australia during September 2011.  
Area-averaged soil moisture from the COSMOS 
Rover measurements are compared to top 5cm 
HDAS soil moisture measurements on a 250m grid 
(Fig. 2). The root mean square error (RMSE) be-
tween ground sampled and estimated soil moisture 
was found to be 0.05m

3
/m

3
, which is close to the 

HDAS systems accuracy.  Thus, results are encour-
aging for the potential use of COSMOS Rover to fill 
the gap between detailed ground measurement sys-
tems such as HDAS and remote sensing systems. 

3 AIRBORNE MEASUREMENT 

A new airborne sensing system (Fig. 3) provides the 
capability to economically map near-surface soil 
moisture at spatial resolutions of 50m across large 
areas.  This capability allows greater areas to be cov-
ered in better spatial and temporal detail than what is 
possible from traditional ground based techniques.  
The approach is based on brightness temperature 
measurements which represent the soil emission at 
microwave wavelengths.  In this application meas-
urements from an airborne Polarimetric L-band 
Multibeam Radiometer (PLMR) are used together 
with ancillary information on soil temperature and 

vegetation water content, in order to make the soil 
moisture measurement.  Using such an airborne sys-
tem, an area of 300km

2
 can be mapped in just a few 

hours at 50m resolution, for an equivalent cost of 
mapping an area two orders of magnitude smaller 
using advanced ground based techniques such as the 
HDAS.  An example of results from such a soil 
moisture mapping system is shown in Figure 3 for 
wet and dry conditions (Walker et al. 2008).   

The airborne PLMR observations and ground 
HDAS data for this example were collected during 
the National Airborne Field Experiment (NAFE) 
conducted during November 2005 in the Goulburn 
River catchment, NSW Australia (see 
www.nafe.unimelb.edu.au).  A sequence of high res-
olution flights were made across a focus farm using 
the PLMR between October 31 and November 25.   

To obtain soil moisture maps from PLMR bright-
ness temperature observations, the effect of across-
track angular variations in the aircraft data were first 
corrected by referencing to a common incidence an-
gle of 38.5º, corresponding to the outer beams. Us-
ing simple averaging of all observations falling with-
in each grid cell the brightness temperature data 
were then binned to a regular 50m grid. The land-
cover type of each pixel was also estimated using a 
30m LandSat Thematic Mapper land cover classifi-
cation for the purpose of setting vegetation specific 
radiative transfer parameters from tables of best es-
timates.  In this example ancillary data on soil tex-
ture and temperature were determined from data col-
lected at the focus farm.  Soil moisture was then 
retrieved using the dual-polarised brightness temper-
ature observations and the standard tau-omega mod-
el (Wigneron et al. 2007), by matching predicted soil 
and vegetation brightness temperature contributions 
to the observations. 

Figure 3 shows the derived high resolution soil 
moisture maps made across a focus farm in the Krui 
area of the Goulburn River catchment on two dates, 
together with the coincident ground survey maps 
made of that farm using the HDAS.  The spatial pat-

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Airborne soil moisture mapping system including L-band radar and radiometer (left) and derived soil moisture maps at 
50m spatial resolution on the 3

rd
 and 17

th
 November 2005 using the L-band radiometer (top right), as compared to ground measured 

soil moisture using the HDAS (bottom right). Units are volumetric soil moisture fraction. 
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terns in these plots show that the more highly elevat-
ed hill tops are typically drier than the lower valley 
bottoms, as expected.  There is also a good general 
agreement with the ground data, when keeping in 
mind that the airborne sensor gives an integrated 
measurement over an area of approximately 2,500m

2
 

while the ground data are in most cases individual 
point measurements of 25cm

2
.  A quantitative com-

parison between the airborne and field soil moisture 
data gave an overall retrieval error less than 
0.04m

3
/m

3
.  On the 3

rd
 November the RMSE was 

0.033m
3
/m

3
 with zero bias while on the 17

th
 No-

vember the RMSE was 0.027m
3
/m

3
 with a bias of 

0.015m
3
/m

3
.  Consequently, airborne passive mi-

crowave remote sensing provides a viable tool for 
high resolution soil moisture mapping across large 
areas, with an accuracy and detail that is not achiev-
able from traditional ground based approaches. 

4 SATELLITE MEASUREMENT 

4.1 L-band radiometer with optical downscaling 

The European Space Agency (ESA) launched the 
Soil Moisture and Ocean Salinity (SMOS) satellite 
in November 2009, being the first-ever dedicated 
soil moisture mission based on L-band passive mi-
crowave radiometry.  However, space-borne passive 
microwave data at L-band suffers from being a low 
spatial resolution measurement, on the order of 
40km, meaning methods need to be developed to 
provide the higher resolution products demanded by 
many applications. DisPATCh (Disaggregation 
based on Physical And Theoretical scale Change) is 
one algorithm under development for downscaling 
SMOS.  This method uses high-resolution skin tem-
perature data from optical sensors that are subse-
quently used to estimate evaporative fraction, which 
is correlated with soil moisture spatial variability 
(Merlin et al. 2008, 2012).  

DisPATCh has been applied to SMOS data over 
the 500km × 100km AACES (Australia Airborne 

Calibration/validation Experiments for SMOS) area 
in the Murrumbidgee Catchment, NSW Australia 
(see www.aaces.monash.edu.au).  The 40km resolu-
tion SMOS soil moisture was disaggregated to 1km 
resolution using the MODIS (Moderate Resolution 
Imaging Spectroradiometer) skin temperature data 
(Fig. 4).  The 1km downscaled data were subse-
quently compared with the AACES intensive ground 
measurements aggregated at a 1 km resolution.  Alt-
hough a persistent dry bias of 0.08m

3
/m

3
 was present 

in the disaggregated data, the correlation between 
downscaled SMOS and in situ data at 1 km resolu-
tion was about 0.7 when applying DisPATCh.  

4.2 L-band radar and radiometer retrieval 

The National Aeronautical and Space Administra-
tion (NASA) is currently developing its soil moisture 
dedicated mission called Soil Moisture Active Pas-
sive (SMAP), with a scheduled launch date of 2014.  
The basis of SMAP is that high resolution (3km) but 
noisy soil moisture data from a L-band radar will be 
used to downscale accurate but low resolution 
(40km) soil moisture data from a radiometer to 
10km.  While the active passive downscaling algo-
rithm for this mission is still under development, the 
potential for enhancing low-resolution passive mi-
crowave soil moisture retrieval using noisy but high-
resolution active microwave data has been demon-
strated.  

Information from the two sensors has been com-
bined within the framework of a system state estima-
tion model based on Bayesian probabilistic theory 
(Zhan et al. 2006).  However, this study relied upon 
synthetically generated radar and radiometer obser-
vations produced by land surface models, thus re-
quiring significant assumptions to be made.  It was 
found that the Bayesian merging method produced 
the best soil moisture retrievals compared with tradi-
tional numerical inversions of the radar or radiome-
ter observations alone, with an average RMSE of 
3km soil moisture retrievals of 0.038m

3
/m

3
 (Fig. 5).  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Possible 1km resolution downscaled soil moisture 
from SMOS using an optical downscaling scheme with data 
from MODIS.  Results are from 18

th
 February 2010 in the Mur-

rumbidgee Catchment, NSW Australia.  Units are volumetric 
soil moisture fraction. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Soil moisture data expected from SMAP for the Red 
Arkansas River basin with simulated fields of a) 3km truth soil 
moisture, and satellite retrieved soil moisture for b) 40km L-
band radiometer observations, c) 3km L-band radar observa-
tions and d) 3km merged L-band radiometer and radar observa-
tions. Units are volumetric soil moisture fraction (from Zhan et 
al, 2006). 
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In comparison the direct radar backscatter inversions 
resulted in a RMSE of 0.060m

3
/m

3
.  Likewise the di-

rect radiometer inversion had a RMSE of 
0.063m

3
/m

3
 when evaluated against the 3km spatial 

resolution truth. 
Research is currently underway by the authors of 

this paper to develop and validate the SMAP 
downscaling concept using real airborne observa-
tions in place of the synthetic observations, using the 
airborne simulator shown in Figure 3.  Here radiom-
eter (PLMR) and radar (PLIS) observations collected 
at 1km and 10m resolution, respectively, will be 
used directly and aggregated to the SMAP resolu-
tions of 40km and 3km to simulate the SMAP data 
streams. The Bayesian methods proposed by Zhan et 
al. (2006) will then be applied, to combine the ob-
servations and their relative uncertainty, and esti-
mate soil moisture at intermediate resolutions.   

5 LAND DATA ASSIMILATION 

Land surface models such as the Joint UK Land En-
vironment Simulator (JULES) can be used to esti-
mate the spatio-temporal variation in soil moisture 
throughout the soil root-zone.  The resolution of 
such estimates is limited only by the spatial infor-
mation content in the input variables such as soil and 
vegetation properties, and precipitation.  The ad-
vantage of using models over observational data is 
that soil moisture estimates can be made continuous 
through time, and information on the root-zone can 
be obtained in addition to the near-surface layer.  
While such model estimates are limited by the accu-
racy of the model physics, model input parameters 
and precipitation forcing, it has been demonstrated 
that these effects can be reduced by constraining the 
model predictions with near-surface soil moisture 
observations such as those available from SMOS.   

Figure 6 shows an example of near-surface and 
root-zone soil moisture estimates from JULES on 
10

th
 March 2010.  The JULES land surface model 

implementation here has used (i) soil data from the 
Australian Soil Resource Information System, (ii) 
land cover data from the National Dynamic Land 
Cover Dataset, and (iii) hourly forcing data from the 
Australian Community Climate and Earth-System 
Simulator numerical weather predictions.  Conse-
quently the JULES soil moisture has been estimated 
at the resolution of the forcing data of approximately 
10km, with spatial variation in soil moisture reflect-
ing the spatial variation in soil properties, land cov-
er, and precipitation across the catchment.  Also 
shown is the near-surface soil moisture observed by 
SMOS on the same day.  Whilst some similarities in 
patterns exist, there are also substantial differences.   

These preliminary comparisons are important to 
quantify the level of correction to be applied to the 
JULES model soil moisture estimates, and to identi-

fy areas with erroneous satellite observations.  An 
added advantage of determining soil moisture from 
models is that with the generation of ensemble pre-
dictions, satellite observations can be used to correct 
the impact of uncertainties from input data (land 
cover, soil, and precipitation).  Consequently, the use 
of ensemble prediction and correction allows a learn-
ing capability to improve model outputs. 

6 CONCLUSIONS 

Soil moisture is an important variable for a range of 
applications.  Moreover, there is a demand for in-
formation on its spatio-temporal variation at better 
than 10km spatial resolution over the root-zone.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Soil moisture distribution for the Murrumbidgee 
Catchment on 10 March 2010 for top 5cm at 40km spatial reso-
lution from SMOS (top row), and at approximately 10km reso-
lution from JULES for top 5cm (middle row) and top 1m (bot-
tom row).  Units are volumetric soil moisture fraction. 



Significant challenges currently exist for providing 
this information in near-real-time to applications.  
However, advances have been made and more are 
expected within the next 5 years.   

There is already a capability to undertake rapid 
ground-based near-surface soil moisture mapping 
across focus areas with an accuracy better than 
0.05m

3
/m

3
 for validation of model, airborne and oth-

er approaches.  There is also a capability to make 
near-surface soil moisture maps at spatial resolutions 
from 50m to 1km across areas of 500km

2
 to 

5,000km
2
 respectively, with an accuracy better than 

0.04m
3
/m

3
.  However, the implementation of these 

approaches is limited by the ability to provide regu-
lar information through time across large areas, and 
throughout the entire soil profile.   

Passive microwave observations from satellites 
such as SMOS and SMAP can provide near-surface 
soil moisture data with a 2-3 day repeat and spatial 
resolution better than 10km when downscaling tech-
niques using optical and/or radar data are applied.  
However, these products are still being matured, and 
do not provide any direct information on root-zone 
soil moisture.   

Models can be used to estimate the soil moisture 
variation through space and time but are limited by 
the accuracy of model physics and input data.   

Consequently a combination of the above ap-
proaches is required, including ground and airborne 
data for validation of emerging satellite products and 
downscaling methodologies, and satellite data used 
collectively with land surface model predictions to 
provide observational constraint to model predic-
tions, thus offsetting errors from model physics and 
input data.  The land surface model not only interpo-
lates the satellite data through time, but extrapolates 
it to deeper depths in the soil profile, and can addi-
tionally downscale the low resolution satellite data 
where higher spatial information content are availa-
ble through precipitation and/or soil and vegetation 
property inputs is available.  The ground and air-
borne data can also play an important role in the val-
idation of such model data assimilation results. 
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