Theme of this AMS Meeting, **"Taking Predictions to the Next Level…"**

"In the next decade we will mine the meteorological predictability associated with measured storage of atmospherically accessible water on land surfaces"

Jim Shuttleworth

Department of Hydrology and Water Resources and Department of Atmospheric Science University of Arizona

Atmospheric Science, Hydrology, and Ecology Programs (grant ATM-0838491)

The AMS Horton Lecture, 2013 University of Arizona

Robert E Horton (1875–1945)

An ecologist and soil scientist, he was:

"the father of modern hydrology"

AGU Horton Medal

Horton's seminal publications in approximate chronological order from 1903 to 1945 include papers on:

base-flow analysis evaporation interception transpiration infiltration overland flow erosion flood waves

snow rainfall and estimates of water yield history of hydrology drainage-basin characteristics ground-water levels stream-channel storage capillarity the physics of rain and thunderstorms

"Taking Predictions to the Next Level…"

Context

The atmosphere is largely powered from below

 Ocean cover 70% of the globe, but continents cover the other 30%

"Taking Predictions to the Next Level…"

University of Arizona

History

Success in discovering and implementing predictability from knowledge of oceanic surfaces involved:

- **1. Recognizing sensitivity to the "oceanic influence"**
- **2. Measuring the "oceanic influence"**
- **3. Modeling the "oceanic influence"**
- **4. Interpreting the consequences of the "oceanic influence"**

For oceanic surfaces, the relevant control providing influence is Sea Surface Temperature (SST)

`Taking Predictions to the Next Level…" **A University of Arizona**

History

Recognizing the Oceanic Influence:

A powerful El Nino in 1982 and 1983 caused severe droughts in Australia and Indonesia, heavy rain in California, and rains and destructive floods in Ecuador and Peru

Measuring the Oceanic influence:

Remote sensing calibration, and information at depth

Taking Predictions to the Next Level..." A University of Arizona

Thermal Infrared

History

Modeling the Oceanic Influence:

Interpreting the Oceanic Influence:

WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

WARM EPISODE RELATIONSHIPS JUNE - AUGUST

COLD EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

COLD EPISODE RELATIONSHIPS JUNE - AUGUST

"Taking Predictions to the Next Level..." A University of Arizona

The "Terrestrial Influence"

History suggests that discovering and implementing predictability from knowledge of terrestrial surfaces will also involve:

- **1. Recognizing sensitivity to the "terrestrial influence"**
- **2. Measuring the "terrestrial influence"**
- **3. Modeling the "terrestrial influence"**
- **4. Interpreting the consequences of the "terrestrial influence"**

For terrestrial surfaces, arguably the most important control providing influence is

"Atmospherically Accessible Water (AAW)"

"Taking Predictions to the Next Level..." MAN University of Arizona

"Atmospherically accessible" water

"Atmospherically accessible" water

The "Terrestrial Influence"

History suggests that discovering and implementing predictability from knowledge of terrestrial surfaces will also involve:

- **1. Recognizing sensitivity to the "terrestrial influence"**
- **2. Measuring the "terrestrial influence"**
- **3. Modeling the "terrestrial influence"**
- **4. Interpreting the consequences of the "terrestrial influence"**

For terrestrial surfaces, arguably the most important control providing influence is

"Atmospherically Accessible Water (AAW)"

"Taking Predictions to the Next Level..." MAN University of Arizona

There is now a MASSIVE literature that provides evidence for atmospheric influence of land surface exchanges

see, for example, the references in the review of *"Atmospheric Sensitivity to Land Surface Exchanges"* **in Chapter 25 of** *Terrestrial Hydrometeorology* **(Shuttleworth; 2012)**

Avissar, R., and Liu, Y.Q. (1996) *J. Geophys. Res.* 101(D3), 7499-7518. Barnett, T.P., Adams, J.C., and Lettenmaier, D.P. (2005) *Nature* 438(17), 303-309. Bastable, H.G., Shuttleworth, W.J., Dallarosa, R.L.G., Fisch, G. and Nobre, C.A. (1993) *Int. J. Clim.* 13, 783–796. Baumgartner, A. and Reichel, E. (1975) *The World Water Balance*. Elsevier, Amsterdam. 179 pp. Beljaars, A.C.M., Viterbo, P., Miller, M.J., and Betts, A.K. (1996) *Mon. Weather Rev.* 124(3), 362-383. Betts, A.K., Ball, J.H., Beljaars, A.C.M., Miller, M.J. and Viterbo, P. (1996) *J. Geophys. Res.* 101(D3), 7209- 7225. Betts A.K., Viterbo, P., Beljaars, A.C.M., Pan, H-L., Hong, S-Y., Goulden, M.L. and Wofsy, S.C. (1998) *J. Geophys. Res*. 103(D18), 23079-23085. Bosilovich, M.G., Schubert, S.D, and Walker, G. (2005) J. Clim. 18, 1591-1608. Bowling, L.C., Lettenmaier, D.P., Nijssen, B., Graham, P.L., Clark, D., Maayar, M.E., Essery, R., Goers, S., Habets, F., van der Hurk, B., Jin, J., Kahan, D., Lohmann, D., Mahanama, S., Mocko, D., Nasonova, O., Niu, G.-Y., Samuelsson, P., Shmakin, A.B., Takata, K., Verseghy, D., Viterbo, P., Ma, X., Xue, Y. and Yang, Z.-L. (2003) *Global and Planet. Change* 38, 1-30. Brown, D.P. and Comrie, A.C. (2002) *Climate Res.* 22, 115–128. Brubaker, K.L., Entekhabi, D. and Eagleson, P.S. (1993). *.J Clim.* 6, 1077–1089. Costa, M.H. and Foley, J.S. (1999) *J. Geophys. Res.* 104(D12), 14189-14198. Cox, P.M., Huntingford, C. and Harding, R.J. (1998) *J. Hydrol*. 213(1-4), 79-94. Daly, C., Neilson, R.P. and Phillips, D.L. (1994) *J. Appl. Meteorol*. 33, 140-158. Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., and Pasteris, P.A. (2008) *nnt. J. Clim*. 28, 2031-2064. Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J. and Wilson, M.F. (1986) *NCAR Tech. Note*, TN-275+STR, 72 pp. Dickinson, R.E., Shaikh, M., Bryant, R. and Graumlich, L. (1998) *J. Clim.* 28, 2823-2836. Dominguez, F. and Kumar, P. (2008) *J. Clim.* 21, 5165–5186. Dominguez, F., Kumar, P. and Vivoni, E.R. (2008) *J. Clim.* 21, 5187–5203. Eltahir, E.A.B. and Bras, L. (1996) Precipitation recycling. Rev. Geophys. 34(3), 367-378. Entekhabi, D., Njoku, E., O'Neill, P., Kellogg, K., Crow, W., Edelstein, W., Entin, J., Goodman, S., Jackson, T., Johnson, J., Kimball, J., Piepmeier, J., Koster, R., McDonald, K., Moghaddam, M., Moran, S., Reichle, R., Shi, J.C., Spencer, M., Thurman, S., Tsang, L. and Van Zyl, J. (2010). *Proc. IEEE* 98(5). Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E., Boone, A., Dai, Y., Essery, R., Fernandez, A., Gusev, Y., Jordan, R., Koren, V., Kowalcyzk, E., Nasonova, N.O., Pyles, R.D., Schlosser, A., Shmakin, A.B., Smirnova, T.G., Strasser, U., Verseghy, D., Yamazaki, T. and Yang, Z.-L. (2004) *Ann. Glaciol.* 38, 150-158. Fassnacht, S.R., Yang, Z.-L., Snelgrove, K.R., Soulis, E.D. and Kouwen, N. (2006) *J. Hydrometeorol.* 7, 298-304. Findell, K.L. and Eltahir, E.A. (1997) *Water Resour. Res.* 33, 725–735. Gochis, D.J., Jimenez, A., Watts, C.J., Garatuza-Payan, J. and Shuttleworth, W.J. (2004) *Mon. Weather Rev.* 132, 2938–2953. Gopalakrishnan, S.G., Roy, S.B. and Avissar, R. (2000) *J. Atmos. Sci.* 57, 334–351. Gutzler, D. and Preston, J. (1997) *Geophys. Res. Lett.* 24, 2207–2210. Higgins, W. and Gochis, D. (2007) 20, 1601-1607. IPCC (2007) available at http://www.ipcc.ch. Jiang, X., Niu, G.-Y. and Yang, Z.-L. (2009) *J. Geophys. Res.* 114, D06109, doi:10.1029/2008JD010756. Johnson, G., Daly C., Hanson, C.L., Lu, Y.Y. and Taylor, G.H. (2000) *J. Appl. Meteorol.* 39, 778-796. Kerr, Y., Waldteufel, P., Wigneron, J.-P., Martinuzzi, J.-M., Font, J. and Berger, M. (2001) *IEEE Trans. Geosci. Remote Sens.* 39, 1729–1736. Korzun, V.I. (1978) *Studies and Reports in Hydrology 25*. UNESCO, Paris. Koster, R.D., Guo, Z., Dirmeyer, P.A., Bonan, G., Chan, E., Cox, P.M., Davies, H., Gordon, C.T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K .W., Pitman, A., Sud, Y.C., Taylor, C.M., Verseghy, D., Vasic, R., Xue, Y. and Yamada, T. (2006) *J. Hydrometeorol.* 7(4), 590–610. Liu, Y., Weaver, C.P. and Avissar, R. (1999) *J. Geophys. Res.* 104(D16), 19515-19533. doi:10.1029/1999JD900361. Luo, L., Robock, A., Vinnikov, K.Y., Schlosser, C.A., Slater, A.G., Boone, A., Braden, H., Cox, P., de Rosnay, P., Dickinson, R.E., Dai, Y., Duan, Q., Etchevers, P., Henderson-Sellers, A., Gedney, N., Gusev, Y.M., Habets, F., Kim, J., Kowalczyk, E., Mitchell, K., Nasonova, O.N., Noilhan, J., Pitman, A.J., Schaake, J., Shmakin, A.B., Smirnova, T.G., Wetzel, P., Xue, Y., Yang, Z.-L. and Zeng, Q.-C. (2003) *J. Hydrometeorol.* 4, 334-351. Makarieva, A.M. and Gorshkov, V.G. (2007) *Hydrol. Earth Syst. Sci.* 11, 1013–1033 Matsui, T., Lakshmi, V. and Small, E.E. (2005) *The Millennium Ecosystem Assessment* report. Available at: http://www.millenniumassessment.org/en/Index.aspx. Narisma, G.T. and Pitman, A.J. (2003)*. Hydrometeorol.* 4(2), 424–436. Nijssen, B., Bowling, L.C., Lettenmaier, D.P., Clark, D., http://www.millenniumassessment.org/en/Index.aspx. Maayar, M.E., Essery, R., Goers, S., Habets, F., van der Hurk, B., Jin, J., Kahan, D., Lohmann, D., Mahanama, S., Mocko, D., Nasonova, O., Niu, G.-Y., Samuelsson, P., Shmakin, A.B., Takata, K., Verseghy, D., Viterbo, P., Ma, X., Xia, Y., Xue, Y. and Yang, Z.-L. (2003) *Global Planet. Change* 38, 31-53. Niu, G.-Y. and Yang, Z.-L. (2004) *J. Geophys. Res.* 109, D23111, doi:10.1029/2004JD004884. Niu, G.-Y. and Yang, Z.- L. (2006) *J. Hydrometeorol.* 7(5), 937-952. Niu, G.-Y. and Yang, Z.-L. (2007)*. Geophys. Res.* 112, D21101, doi:10.1029/2007JD008674. Oki, T. and Kanae, S. (2006) *Science* 313(5790), 1068 - 1072. Salati, E., Dall'Olio, A., Matsui, E. and Gat, J.R. (1979) *Water Resour. Res.* 15(5), 1250–1258. Sellers, P.J., Mintz, Y., Sud, Y.C. and Dalcher, A. (1986) *J. Atmos. Sci*. 43, 505-531. Sellers, P.J., Randall, D.A., Collatz, C.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., Collelo, G. and Bounoua, L. (1996) *J. Clim*. 9, 676-705. Shukla, J. and Mintz, Y. (1982) *Science* 215(4539), 1498-1501. Shuttleworth, W.J. (2006) *Trans. ASABE* 49(4), 925-935. Shuttleworth, W.J. and Wallace, J.S. (2010) *Trans. ASABE* 52(6),1895-1906. Shuttleworth, W.J., Zreda, M., Zeng, X., Zweck, C., and Ferre, P.A. (2010) Proceedings of the British Hydrological Society's Third International Symposium: Newcastle University, 19-23 July 2010. ISBN: 1 903741 17 3. Taylor, C.M., Parker, D.J. and Harris, P.P. (2007) *Geophys. Res. Lett.* 34, L15801, doi:10.1029/2007GL030572. Teuling, A.J., Seneviratne, S.I., Williams, C. and Troch, P.A. (2006) *Geophys. Res. Lett.* 33. L23403. doi:10.1029/2006GL028178. Tucker, D.F. and Crook, N.A. (1999) *Mon. Weather Rev.* 127, 1259-1273. Ueda, H. and Yasunari, T. (1998) *J. Meteorological Society of Japan* 76, 1-12. Weaver, C.P., and Avissar, R. (2001) *Bull. Amer. Meteor. Soc.* 82, 269–281. Werth, D., and Avissar, R. (2002) *J. Geophys*. *Res.* 107, D20, 8087, doi:10.1029/2001JD000717.

There is now a MASSIVE literature that provides evidence for atmospheric influence of land surface exchanges

see, for example, the references in the review of *"Atmospheric Sensitivity to Land Surface Exchanges"* **in Chapter 25 of** *Terrestrial Hydrometeorology* **(Shuttleworth; 2012)**

Viterbo, P., Miller, M.J., and Betts, A.K. (1996) *Mon. Weather Rev.* 124(3), 362-383. Betts, A.K., B 7225. Betts A.K., Viterbo, P., Beljaars, A.C.M., Pan, H-L., Hong, S-Y., Goulden, M.L. and Wofsy. **J. Geopheys. Res. 103(D18), 23079-2308** Chubert, S.D, and Walker, G. (2005) *J. Clim.* 18, 1591-1608. Bowling, L.C., Lettenmaier, D.P., Nijssen, B., Graham, **P.L., P. Andets, P.**rk, B., Jin, J., Kahan, D., Lohmann, D., Mahanama, S., Mocko, D., Nasonova, O., Niu, G.-Y., Samuelsson, P., Shmakin, A.B., A.B., A.B., A.B., A.B., Takata, Z., O., Y., *A.B., D., Y., Xang, Z., Xue, X., Xue, X., Xue, X., Xue, X., Xue, X., Xue, X.,* Planet. Change 38, 1-30. Brown, D.P. and Comrie, A.C. (2002) *Climate Res.* 22, 115–128. Brubak**er, Province Descendent Planet And Accepted A** Foley, J.S. (1999) *J. Geophys. Res.* 104(D12), 14189-14198. Cox, P.M., Huntingford, C. and Hard**ing, R.J. Property, R.J. (1998)** *J. Geophys. Res.* 104(D12), 14189-14198. Cox, P.M., Huntingford, C. and Hard**ing, R.J. Comp** Appl. Meteorol. 33, 140-158. Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylo**r, P.A. (2008) 2008) 2008 nnt. Pasteris, P.A. (2008) nnt. Pasteris, P.A. (2008) nnt. Pasteris, P.A. (2008) nnt. P** Henderson-Sellers, A., Kennedy, P.J. and Wilson, M.F. (1986) *NCAR Tech. Note*, TN-275+STR, 7**2 promation of the CLIM CLIM CLIM Grammation of the CLIM** Dominguez, F. and Kumar, P. (2008) *J. Clim.* 21, 5165–5186. Dominguez, F., Kumar, P. and Vivoni, E.R. **Eltahir, E.R. 2008** Precipitation recycling. *Rev. Geophys.* 34(3), 367-378. Entekhabi, D., Njoku, E., O'Neill, P., Kellogg, K., Crow, W., Edelstein, W., Entin, J., Goodman, S., Jackson, T., Johnson, J., Kimball, J., Piepmeier, J., Koster, R., McDonald, K., Moghaddam, M., Moran, S., Reichle, R., Shi, J.C., Spencer, M., Thurma**n, S., Thurman, S., Thurman, S., Tsang, P., 2010). Proc. IT COLLING COLLING (F., Brown, R., Brown, R., Brown, R., Brown, R., B** Fierz, C., Lejeune, Y., Bazile, E., Boone, A., Dai, Y., Essery, R., Fernandez, A., Gusev, Y., Jordan **C. R. R. R. R. R. R. R. R. A. A. A.** Schlosser, R. R. Schlosser, A., Dai, Y., Essery, R., Fernandez, A., Gusev, Y., Jord

Avissar, R., and Liu, Y.Q. (1996) *J. Geophys. Res.* 101(D3), 7499-7518. Barnett, T.P., Adams, J.C., and Lettenmaier, D.P. (2005) *Nature* 438(17), 303-309. Bastable, H.G., Shuttleworth, W.J., Dallarosa, R.L.G., Fisch, G. and Nobre, C.A. (1993) *Int. J. Clim.* 13, 783–796. Baumgartner, A. and Reichel, E. (1975) *The World Water Balance*. Elsevier, Amsterdam. 179 pp. Beljaars, A.C.M.,

Go to the Wiley-Blackwell stand at Booth 932 for a special AMS Meeting deal!

Smirnova, T.G., Strasser, U., Verseghy, D., Yamazaki, T. and Yang, Z.-L. (2004) *Ann. Glaciol.* 38, 150-158. Fassnacht, S.R., Yang, Z.-L., Snelgrove, K.R., Soulis, E.D. and Kouwen, N. (2006) *J. Hydrometeorol.* 7, 298-304. Findell, K.L. and Eltahir, E.A. (1997) *Water Resour. Res.* 33, 725–735. Gochis, D.J., Jimenez, A., Watts, C.J., Garatuza-Payan, J. and Shuttleworth, W.J. (2004) *Mon. Weather Rev.* 132, 2938–2953. Gopalakrishnan, S.G., Roy, S.B. and Avissar, R. (2000) *J. Atmos. Sci.* 57, 334–351. Gutzler, D. and Preston, J. (1997) *Geophys. Res. Lett.* 24, 2207–2210. Higgins, W. and Gochis, D. (2007) 20, 1601-1607. IPCC (2007) available at http://www.ipcc.ch. Jiang, X., Niu, G.-Y. and Yang, Z.-L. (2009) *J. Geophys. Res.* 114, D06109, doi:10.1029/2008JD010756. Johnson, G., Daly C., Hanson, C.L., Lu, Y.Y. and Taylor, G.H. (2000) *J. Appl. Meteorol.* 39, 778-796. Kerr, Y., Waldteufel, P., Wigneron, J.-P., Martinuzzi, J.-M., Font, J. and Berger, M. (2001) *IEEE Trans. Geosci. Remote Sens.* 39, 1729–1736. Korzun, V.I. (1978) *Studies and Reports in Hydrology 25*. UNESCO, Paris. Koster, R.D., Guo, Z., Dirmeyer, P.A., Bonan, G., Chan, E., Cox, P.M., Davies, H., Gordon, C.T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K .W., Pitman, A., Sud, Y.C., Taylor, C.M., Verseghy, D., Vasic, R., Xue, Y. and Yamada, T. (2006) *J. Hydrometeorol.* 7(4), 590–610. Liu, Y., Weaver, C.P. and Avissar, R. (1999) *J. Geophys. Res.* 104(D16), 19515-19533. doi:10.1029/1999JD900361. Luo, L., Robock, A., Vinnikov, K.Y., Schlosser, C.A., Slater, A.G., Boone, A., Braden, H., Cox, P., de Rosnay, P., Dickinson, R.E., Dai, Y., Duan, Q., Etchevers, P., Henderson-Sellers, A., Gedney, N., Gusev, Y.M., Habets, F., Kim, J., Kowalczyk, E., Mitchell, K., Nasonova, O.N., Noilhan, J., Pitman, A.J., Schaake, J., Shmakin, A.B., Smirnova, T.G., Wetzel, P., Xue, Y., Yang, Z.-L. and Zeng, Q.-C. (2003) *J. Hydrometeorol.* 4, 334-351. Makarieva, A.M. and Gorshkov, V.G. (2007) *Hydrol. Earth Syst. Sci.* 11, 1013–1033 Matsui, T., Lakshmi, V. and Small, E.E. (2005) *The Millennium Ecosystem Assessment* report. Available at: http://www.millenniumassessment.org/en/Index.aspx. Narisma, G.T. and Pitman, A.J. (2003)*. Hydrometeorol.* 4(2), 424–436. Nijssen, B., Bowling, L.C., Lettenmaier, D.P., Clark, D., http://www.millenniumassessment.org/en/Index.aspx. Maayar, M.E., Essery, R., Goers, S., Habets, F., van der Hurk, B., Jin, J., Kahan, D., Lohmann, D., Mahanama, S., Mocko, D., Nasonova, O., Niu, G.-Y., Samuelsson, P., Shmakin, A.B., Takata, K., Verseghy, D., Viterbo, P., Ma, X., Xia, Y., Xue, Y. and Yang, Z.-L. (2003) *Global Planet. Change* 38, 31-53. Niu, G.-Y. and Yang, Z.-L. (2004) *J. Geophys. Res.* 109, D23111, doi:10.1029/2004JD004884. Niu, G.-Y. and Yang, Z.- L. (2006) *J. Hydrometeorol.* 7(5), 937-952. Niu, G.-Y. and Yang, Z.-L. (2007)*. Geophys. Res.* 112, D21101, doi:10.1029/2007JD008674. Oki, T. and Kanae, S. (2006) *Science* 313(5790), 1068 - 1072. Salati, E., Dall'Olio, A., Matsui, E. and Gat, J.R. (1979) *Water Resour. Res.* 15(5), 1250–1258. Sellers, P.J., Mintz, Y., Sud, Y.C. and Dalcher, A. (1986) *J. Atmos. Sci*. 43, 505-531. Sellers, P.J., Randall, D.A., Collatz, C.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., Collelo, G. and Bounoua, L. (1996) *J. Clim*. 9, 676-705. Shukla, J. and Mintz, Y. (1982) *Science* 215(4539), 1498-1501. Shuttleworth, W.J. (2006) *Trans. ASABE* 49(4), 925-935. Shuttleworth, W.J. and Wallace, J.S. (2010) *Trans. ASABE* 52(6),1895-1906. Shuttleworth, W.J., Zreda, M., Zeng, X., Zweck, C., and Ferre, P.A. (2010) Proceedings of the British Hydrological Society's Third International Symposium: Newcastle University, 19-23 July 2010. ISBN: 1 903741 17 3. Taylor, C.M., Parker, D.J. and Harris, P.P. (2007) *Geophys. Res. Lett.* 34, L15801, doi:10.1029/2007GL030572. Teuling, A.J., Seneviratne, S.I., Williams, C. and Troch, P.A. (2006) *Geophys. Res. Lett.* 33. L23403. doi:10.1029/2006GL028178. Tucker, D.F. and Crook, N.A. (1999) *Mon. Weather Rev.* 127, 1259-1273. Ueda, H. and Yasunari, T. (1998) *J. Meteorological Society of Japan* 76, 1-12. Weaver, C.P., and Avissar, R. (2001) *Bull. Amer. Meteor. Soc.* 82, 269–281. Werth, D., and Avissar, R. (2002) *J. Geophys*. *Res.* 107, D20, 8087, doi:10.1029/2001JD000717.

Many studies provide evidence for mechanisms of influence

Influence of topography Moisture recycling

Imposed change of land cover

Seasonal vegetation

Changes in frozen precipitation

Changes in soil moisture

Many studies provide evidence for mechanisms of influence

Influence of topography Moisture recycling

Potential Evaporation $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ No Evaporation

 P recipitation Contours (mm/day) P \rightarrow P (Shukla and Mintz, 1982)

Seasonal vegetation

Regional Heterogeneity Local climate

Imposed change of land cover

Changes in soil moisture Changes in frozen precipitation *Regional Mesoscale* Wind **Winter Snow Extent** Summer Rainfal **Atmospherically Accessible Water Divergence** 1975 1980 1985 1990 **Convergence** Gutzler & Preston (1997) (Taylor et al, 2006) (Koster et al, 2006)

Modeling the "terrestrial influence"

There has been very substantial progress in developing models of the terrestrial influence

Model grid resolution of regional and global models has reduced hugely

3.5 cycles of improvement in the realism of land surface models

" Taking Predictions to the Next Level..." A University of Arizona

Modeling the "terrestrial influence"

Using field data with multi-criteria optimization to calibrate models

Creation of Land Data Assimilation Systems (LDAS)

North American LDAS

0.125 resolution Global LDAS 0.125 resolution

Land Information System (LIS) Global, regional, point (1km resolution, and finer)

BUT ALL MODELS NEED INITIATION AND CORRECTION

" Taking Predictions to the Next Level..." A University of Arizona

The "Terrestrial Influence"

"In the next decade we will mine the meteorological predictability associated with measured storage of atmospherically accessible water on land surfaces "

(Shuttleworth 2013)

HOW?

By creating the capability to measure the "atmospherically accessible water" (available in soil and vegetation) at the land surface.

We are in the first stages of an observational revolution

"Taking Predictions to the Next Level…"

Measuring the "terrestrial influence"

Components of the upcoming observational revolution

Remotely Sensed Large pixel-scale area-averages

Mobile

hectometer-scale area-averages combined to large pixel scale

(e.g., SMAP Test Bed)

Measuring the "terrestrial influence"

Remote Sensing Platforms

Soil Moisture Ocean Salinity (SMOS) (launched Nov 2, 2009)

http://www.esa.int/esaLP/LPsmos.html http://smap.jpl.nasa.gov/instrument/

Images every 1.2 seconds Altitude ~ 758 km Field of view \sim 1000 km hexagon Global coverage every 3 days

"Taking Predictions to the Next Level…"

Soil Moisture Active Passive (SMAP) (projected launch 2114)

Radiometer/SAR L-band (1.20-1.41 GHz) Measures surface emission/backscatter Measurement swath width \sim 1000 km Global coverage 2-3 days

University of Arizona

"Taking Predictions to the Next Level…"

Soil Moisture Ocean Salinity (SMOS) (launched Nov 2, 2009)

Soil Moisture Active Passive (SMAP)

accessible?

Expectations for the SMAP Platform

Soil Moisture Active Passive (SMAP)

Instrument:

- \Box Includes a radiometer and a synthetic aperture radar operating at L-band (1.20-1.41 GHz).
- \Box Will make coincident measurements of surface emission and backscatter, with the ability to sense the soil conditions through moderate vegetation cover.
- Measurements will be analyzed to yield estimates of soil moisture and freeze/thaw state.

PRODUCTS (both SMAP and SMOS)

Primary observation-derived "soil moisture" product: soil moisture in the top 5 cm with accuracy \pm 0.04 m³ m⁻³ at \sim 10 km resolution

Additional model-derived "soil moisture" product: estimated soil moisture in top 1 m of soil (using EnKF to merge SMAP data with estimates from NASA Catchment model driven with observation-based surface meteorological forcing, including precipitation.) **Most relevant to meteorological prediction**

Expectations for the SMAP Platform

Soil Moisture Active Passive (SMAP)

Instrument:

- \Box Includes a radiometer and a synthetic aperture radar operating at L-band (1.20-1.41 GHz).
- \Box Will make coincident measurements of surface emission and backscatter, with the ability to sense the soil conditions through moderate vegetation cover.
- Measurements will be analyzed to yield estimates of soil moisture and freeze/thaw state.

PRODUCTS (Both SMAP and SMOS) The true

Primary observation-derived "soil moisture" product: soil md top 5 cm with accuracy \pm **0.04 m³ m⁻³ at** \sim **10 km resolution** \sim

Additional model-derived "soil moisture" product: estimated in top 1 m of soil (using EnKF to merge SMAP data with estimates Catchment model driven with observation-based surface meteorologic including precipitation.)

SMAP/SMOS product (cal/val reflects this)

Mainly depends on accurate ancillary data and a realistic, model of soil movement (does cal/val reflect this?)

Measuring the "terrestrial influence"

In Situ and Mobile Cosmic-ray Surface Moisture Sensors

The basic idea and sensor technology is not new:

- \triangleright neutron detectors developed in the 1950s are available "off the shelf"
- \triangleright it was known in the 1960s that above-ground neutron count rate depends on soil moisture

What is New?

- **systematic understanding of cosmic ray neutron interactions at the ground atmosphere interface,** revealed near surface above-ground fast neutron density has:
	- **a source footprint of hectometers**
	- **limited sensitivity to soil type**
- **improved and low power electronics** (for pulse shaping and amplification; remote detection and correction of sensor drift, and remote data capture); and better (solar) power systems

University of Arizona

How are high energy neutrons created

Instrument Calibration Soil Sample Depth **Radius** Fast 25 Cumulative fraction of counts Neutron flux (relative) $20 0.8$ Depth (cm) 40 0.6 20 granite ٥ 60 0.4 basalt 80 quartz 0.2 15 limestone $100 0.0$ 0.0 0.2 0.6 0.8 0.4 1.0 200 400 600 800 1000 \circ Cumulative fraction of counts Diameter (m) 10 86% of neutrons from 86% of neutrons from within a depth of 70 cm within 350 m radius 0.0 $0₁$ 0.2 0.3 04 (dry); 12 cm (wet)**Fast Neutron** Volumetric soil moisture content **Detector** A "shift" related to the fixed chemistry of **(Zreda, et al; 2008)** the soil and (perhaps) vegetation, (including chemically bound hydrogen) 35 SO REQUIRES ONE FIELD CALIBRATION **COSMOS** 30 AT INSTALLATION **Measurement** 25 ≫ Allows measurement of varying water Soil moisture, wt. $\overline{20}$ content, e.g. soil pore water (with a small, 15 10 correction for atmospheric humidity) **Gravimetric Jul 07** Jan 08 Jul 08 Jan 09 **Jul 09** Jan 10 **Comparisons** University of Arizona

Effect of additional water stores near the land surface

Calibration gives correction for fixed additional sources

A simple correction for changes in atmospheric moisture

$$
N_{corr} = N_{meas} \left[1 + 0.0054 \left(\Delta \rho \right) \right]
$$
 (Rosolem at al, 2013)

where:

N_{corr} is the corrected sensor count rate **Nmeas is the measured sensor count rate** $(\Delta \rho)$ is the difference (in gm m⁻³) between the water vapor content **of the air relative to that on the day of sensor calibration**

University of Arizona

Effect of "slow" biowater at two sites near Flagstaff, AZ

- **Reduction of ~100 counts due to the (fairly constant) forest biowater**
- **Corresponds to biowater equivalent of 17.1 0.6 mm of water**
- **Three independent allometric estimates give biowater in the range 18-25 mm The difference may be due to: remnant trunks at the wildfire site**
	-
	- **hydrogen "clumping" in tree trunks**

(Frantz et al, 2012)

Current in situ COSMOS Probe deployment in the USA and beyond

Soil Moisture (V=volumetric, G=gravimetric, U=uncalibrated)

 $0 - 05%$ \bigcirc 05 - 15% \bigcirc 15 - 25% $25 - 35%$ $> 35%$ mixed

The aftermath of Hurricane "Sandy" on Oct 30, 2012

[Interpolation following Smith and Wessel (1990)]

Potential US COSMOS Deployments at up to 500 Sites

Ameriflux \bigcirc CRN \bigcirc CZO \bigcirc NEON \bigcirc SCAN **SMAP**

Assimilating COSMOS data into LDAS and LSPs

Land Surface Model

GOAL

to update soil moisture profiles by assimilating the cosmic-ray fast neutron count

Modeled Soil **Moisture** Profile

Requires an accurate model to interpret modeled soil moisture profiles in terms of the above-ground fast neutron count:

- 1. to diagnose if there is a discrepancy in the modeled soil moisture status
- 2. to interpret knowledge of the extent of that discrepancy back into the LSP, with weighting between layers reflecting their relative influence on the fast neutron count

In Principle, the Needed Model Already Exists

The *Monte Carlo N-Particle eXtended* (MCNPX) model (created to design nuclear bombs!)

- requires specified chemistry for the atmosphere and soil, including hydrogen.
- uses measured nuclear collision cross sections for all constituents
- **tracks the life history of randomly** selected, individual cosmic rays and their collision products
- counts the "fast neutrons" that pass through the detector volume of the COSMOS probe

The COsmic-ray Soil Moisture Interaction Code (COSMIC)

COSMIC is a simple analytic model which:

- **captures the essential below-ground physics that MCNPX represents**
- **can be calibrated by optimization against MCNPX so that the nuclear collision physics is re-captured in parametric form**

The COsmic-ray Soil Moisture Interaction Code (COSMIC)

The resulting analytic function that describes the total number of fast neutrons reaching measurement point is:

Six parameters to be defined:

• $(L_j, (L_j)$ and (L_j) are site-independent and are easily determined from **MCNPX**

> L_1 = 162.0 gm per unit area $L₂$ = 129.1 gm per unit area L_4 = 3.61 gm per unit area

 $\left(\mathcal{N}\right)$, $\left(\alpha\right)$ and $\left(\mathcal{L}\right)$ require multi-parameter optimization against site specific**specific runs of MCNPX for a range of hypothetical soil moisture profiles**

Calibrating COSMIC

Calibrating COSMIC

Estimating COSMOS Probe counts from measured soil moisture profiles at the Santa Rita site

Area-average from the TDT sensors doesn't sample the near-surface (above 10 cm depth), so both the MCNPX & COSMIC calculations based on TDT data do not recognize the faster rate of drying of surface soil moisture

University of Arizona

(Shuttleworth et al, 2013)

The COsmic-ray Soil Moisture Interaction Code (COSMIC)

Using COSMIC to assimilate COSMOS probe counts into the Noah model at the Santa Rita site

(Shuttleworth et al, 2013)

Mobile Measurement of Near Surface Water

The COSMOS "Rover"

- **Mounted in a vehicle**
- **Large detectors (to increase sample volume and count rate)**
- **Includes GPS**
- **Assumes area-average value for calibration**
- **Driven for a day, to sample a selected area systematically**
- **Interpolation of the soil moisture values measured while driving the sample route**

(Zreda, et al; 2013)

University of Arizona

Mobile Measurement of Near Surface Water

Experimental Mapping of Near Surface Water with the COSMOS Rover at the "SMAP" Test Bed in Oklahoma

Longitude E

PRELIMINARY

University of Arizona

- **1. Measured near-surface water won't help if the LSP is wrong! (It might make predictions worse!)**
- **2. Measurement is only of part of the near-surface water profile! ("Equifinality" is a potential challenge!)**
- **3. Biological water is also "atmospherically accessible water"! (Vegetation dynamics are needed in all LSMs/LDAS)**
- **4. Some of the near-surface soil water is not accessible! (empirical estimates?, use rate of change of total surface water?)**

1. New measurements of near surface water can only improve meteorological prediction if LSPs correctly describe its influence on surface exchanges

Pending re-parameterization, they can make predictions worse!

2. Measurement is only of part of the near-surface water profile, the accuracy of the remainder depends on the accuracy of the ancillary forcing and model used to describe water movement

With a Remote Sensing Product

"Equifinality" is a potential challenge!

2. Measurement is only of part of the near-surface water profile, the accuracy of the remainder depends on the accuracy of the ancillary forcing and model used to describe water movement

With a COSMOS Probe

Modern data assimilation methods and the fact we have a time series of data should help with this, providing the LSP is good

3. Biological contributions are part of the measured near surface water and changes in them must also be modeled in LSPs or LDAS

Representing vegetation dynamics is needed in LSMs even when only concerned with modeling energy flux exchanges

40⁄o

3%

5%

4%

4%

ancouver

Francisc

Seattle

6%

5%

6%

Ang

21%

Hawaii: 2

5%

 \textsf{Los}

4%

10%

 $2%$

6%

New Knowledge Bring New Challenges

4. A significant portion of the the measured near-surface water is "lattice water" and not accessible to the atmosphere

Can we live with assuming an average value?

Can we build empirical relationships?

Can we assimilate the relative change in total water?

University of Arizona

Summary

- **1. We are in the first stages of an observational revolution which will give routine measurement of atmospherically accessible water as:**
	- **a. Remotely sensed large pixel-scale area-averages**
	- **b. Stationary hectometer-scale area-averages**
	- **We are in the first stages of an observational revolution c. Mobile hectometer-scale area-averages combined to large pixel scale**
- **2. New measurements bring new challenges:**
	- **a. Measured near-surface water won't help if the LSP is wrong**
	- **b. Measurement is only of a part of the near-surface water profile**
	- **c. Biological water is also "atmospherically accessible water"!**
	- **d. Some of the near-surface soil water is not accessible**
- **3. We are being given the tools, we have a duty to use them effectively; and the hydrology section of AMS is the most appropriate community to do this**
- **4. If we accept this challenge,**

 "in the next decade we will mine the meteorological predictability associated with measured storage of atmospherically accessible water on land surfaces"

"Taking Predictions to the Next Level…" University of Arizona

Questions

For a copy of this presentation, please email: shuttle@email.arizona.edu>